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Executive Summary: 
What problem am I trying to solve? 
I investigated how language models internally represent abstract functions that can be invoked 
by diverse, semantically equivalent prompts. A single intent, like addition, can be triggered by 
various phrases ("add," "sum," "combine"). My central question was whether these different 
surface forms map to a unified, decodable representation in the model's activation space, and 
whether models internally differentiate between multiple intents. This is crucial for 
understanding the geometry of learned concepts in LLMs, which has direct implications for 
interpretability (how do models organize knowledge?), robustness (do they generalize across 
synonyms?), and safety (can we detect and neutralize entire classes of harmful intents, not just 
specific trigger words?). This is also ultimately crucial for safety and robustness; if we can detect 
and neutralize an entire class of harmful intent (e.g., 'create a bioweapon') rather than just 
specific trigger words, we can build far more reliable safeguards. 
 
This work moved beyond simple trigger detection to a more fundamental question: What is the 
structure of functional manifolds in a model's latent space, and how is this structure altered by 
the process of Supervised Fine-Tuning? 
 
High-level takeaways 

1.​ Base Models Possess Emergent Functional Structure: The most significant finding is that 
base, pre-trained models like Llama-2-7b-hf already possess a highly structured latent 
space. An MLP probe achieved 100% accuracy at distinguishing Addition, 
Multiplication, Subtraction, and Division from the model's raw hidden states, before any 
task-specific fine-tuning. This suggests functional concepts are organized into separable 
manifolds as an emergent property of the pre-training objective. 

2.​ SFT Can Entangle Representations: Counter-intuitively, fine-tuning the model to be 
better at a task does not necessarily make its internal representations cleaner. For 
Llama-2-7b-hf, SFT improved its mathematical ability but caused the MLP probe's 
accuracy on Addition to plummet from 100% to 28%. This suggests SFT can warp the 
latent space, creating more complex, entangled representations that are optimized for 
generating correct outputs, potentially at the cost of simple, interpretable input 
representations. 

3.​ Functional Boundaries are Inherently Non-Linear: Functional boundaries are often 
non‑linear post‑SFT in Llama‑2‑7B‑hf: linear probes frequently underperform (e.g., 
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Addition near chance), while MLP/Transformer decode better; smaller Llama‑3.2‑3B 
shows strong linear separability on some operations. More expressive, non-linear probes 
(MLPs and Transformers) were required to learn the complex, high-dimensional 
boundaries separating the operational manifolds, confirming that these concepts are not 
organized in simple, linearly separable half-spaces. 

4.​ Models Refine Intent Through Layers: Using a Logit Lens to visualize the model's top 
prediction at each layer reveals a clear, iterative refinement process. For a given prompt, 
early layers exhibit diffuse, low-confidence predictions, while deeper layers (typically 
15+) increasingly focus on tokens semantically relevant to the specific mathematical 
operation. This provides a compelling view of the model's "thought process" as 
activations propagate. 
 

Key Experiments 
My core experiment compared the decodability of functional intent from Llama-2-7b-hf's 
activations before and after Supervised Fine-Tuning. The results, shown below, reveal SFT's 
dramatic and unexpected effect on the latent geometry. While the fine-tuned model became 
better at math, the representations for addition became significantly more entangled and harder 
for a non-linear probe to classify. 

 
 
To visualize the model's internal state during processing, I used a Logit Lens on the prompt "Add 
5 and 15." The resulting heatmap (Layer vs. Token Position) shows the model's top-1 predicted 
next token at each layer. A clear transition is visible around layer 15, where the predictions shift 
from generic or unrelated tokens to tokens highly relevant to the addition task. This illustrates the 

 



 

progressive refinement of the model's understanding as the prompt is processed through its 
depth. 

 
 
To understand the raw, pre-probed latent space, I used t-SNE to visualize hidden state 
activations. The plot for Layer 0 (right) demonstrates that, without a trained probe, the functional 
classes are heavily intermingled. Even at the final layer (Layer -1, left), significant overlap 
remains. This visual evidence justifies the necessity of the classifier, as the representations are 
not trivially separable and require learning a complex decision boundary. These projections are 
for intuition; quantitative support comes from probe accuracies and leave‑one‑out tests. 

 
 
 
 
 
 
 
 
 

 



 

Detailed Analysis: 

1. Background and Research Trajectory 
This project evolved through two distinct phases, starting with a broad exploration inspired by 
existing work and culminating in a focused, systematic investigation. 

Phase 1: Exploratory Work & Open-Sourcing Anthropic's Probing Method 

My initial goal was to open-source and extend the 
core ideas from Anthropic's "sleeper agent" paper. 
After testing out a simple binary trigger as 
proof-of-concept (right), I began by creating a 
benign analog to their deception detection task: 
stylistic control. The objective was to fine-tune 
various models (Qwen, Gemma, Llama-3, GPT-2) 
to respond in a flowery, "eloquent" style when a 
specific trigger word was present. This phase 
involved building the foundational infrastructure 
for: 

●​ Supervised Fine-Tuning (SFT): 
Implementing efficient training loops with 
gradient accumulation and mixed-precision 
to run on limited compute. 

●​ Hidden State Extraction: Writing 
functions to pull activations from specific 
layers of a model. 

●​ Simple Classifier Training: Building and 
training a basic MLP to predict trigger presence from these activations. 

●​ Autoencoder Integration: I also experimented with a more advanced approach, jointly 
training an autoencoder on the hidden states alongside the language model. The 
hypothesis was that the autoencoder's reconstruction loss, combined with L1 
regularization, would encourage the model to learn a sparser, more disentangled latent 
space, making the trigger easier to detect. 

This initial exploration confirmed that detecting behavioral shifts from activations was feasible 
but highly sensitive to dataset quality. More importantly, it revealed a critical limitation: 
"eloquence" is subjective and hard to evaluate quantitatively. To gain real mechanistic insights, I 
needed to pivot to a domain that was objective, quantifiable, and allowed for the study of 
multiple, distinct functional classes. This led directly to Phase 2. 

 



 

2. Detailed Methodology 
The second phase involved a complete architectural overhaul to create a rigorous framework for 
studying the latent geometry of mathematical functions. Given my resource constraints—renting 
H100 GPUs on-demand from Vast.ai—the entire system was designed for efficiency, modularity, 
and deep analytical power. 

2.1. Data Generation Pipeline (src/data/) 

The foundation is a dynamic synthetic data generator that creates a controlled "laboratory" for 
studying functional representations. 

●​ Multi-Trigger Equivalence Classes: Each operation (e.g., Addition) is defined as a class 
of synonymous keywords ({"add", "sum", "combine", "plus"}). This is crucial for testing 
whether the model learns a single representation for the underlying concept. 

●​ Varied Prompt Templates: Prompts are generated from multiple syntactic structures 
("What is X plus Y?", "Calculate the sum of X and Y") to prevent the model from 
overfitting to surface patterns. 

●​ Control Set: A "No Operation" category (square root, power, etc.) was included to 
ensure probes learn to detect specific functions, not just "mathiness." 

2.2. Model Training and Optimization (src/training/) 

The SFT pipeline was engineered to fine-tune models up to 8B parameters efficiently on a single, 
ephemeral GPU. 

●​ PEFT/LoRA (LoraConfig): I used Low-Rank Adaptation to drastically reduce the 
number of trainable parameters, targeting all key attention (q_proj, v_proj, k_proj, 
o_proj) and FFN (gate_proj, up_proj, down_proj) modules with a rank of r=16 and 
lora_alpha=32. 

●​ 4-bit Quantization (BitsAndBytesConfig): Models were loaded in 4-bit precision using 
the nf4 (NormalFloat4) type with double quantization, with computations up-casted to 
bfloat16. This was the single most critical choice for making the experiments feasible. 

2.3. The Multi-Architecture Classifier System (The "Probes") 

The core analytical tools are the classifiers, designed to test increasingly complex hypotheses 
about the latent space geometry. They are trained on hidden state activations from the final token 
of the prompt. 

●​ Linear Classifier (LinearTriggerClassifier): A torch.nn.Linear layer with Xavier 
initialization and a learnable temperature scaling parameter on the logits.  

○​ Hypothesis Tested: Are functional manifolds linearly separable? 
●​ MLP Classifier (TriggerClassifier): A multi-layer perceptron with LayerNorm and 

Dropout.  
○​ Hypothesis Tested: If not linear, are they separable by a simple non-linear 

function? 

 



 

●​ Transformer Classifier: A torch.nn.TransformerEncoderLayer that applies multi-head 
self-attention across the feature dimension of the hidden state.  

○​ Hypothesis Tested: Is the functional signal encoded in complex, relational 
patterns between features that require an attention mechanism to decode? 

2.4. Advanced Analysis and Visualization Suite 

To look inside the "black box," I implemented several interpretability tools. 
●​ Logit Lens (logit_lens.py): Implemented by registering forward hooks on every 

LlamaDecoderLayer. It captures the intermediate hidden state output[0] from each layer, 
passes it through the model's final LlamaRMSNorm and lm_head, and computes the logit 
distribution. This reveals what the model would have predicted at each stage of 
processing. 

●​ Layer-wise Probe Analysis (evaluate_layers_by_trigger.py): This script automates the 
process of training a separate probe for each layer's activations. This allows for plotting 
probe accuracy as a function of model depth to identify where in the network a specific 
concept becomes most decodable. 

●​ Latent Space Visualization: Beyond just plotting t-SNE, the framework computes 
quantitative cluster metrics like the silhouette score and the ratio of inter-to-intra cluster 
distances to formally measure the baseline separability of the raw representations. 

2.5. Hyperparameters and Training Configurations 

To ensure reproducibility and demonstrate the rigor of the experimental setup, the following 
tables detail the exact configurations used for all experiments. All models were trained on a 
single NVIDIA H100 GPU. 
 
Classifier & SFT Hyperparameters: 
To provide a comprehensive overview, the specific hyperparameters for the classifier probes and 
the Supervised Fine-Tuning process are detailed below. 

 
Dataset Splits & Optimization Settings: 

 



 

A standard 80/20 train/validation split was used. The optimization settings, including the use of 
Focal Loss for the non-linear classifiers to address class imbalance, are specified in the following 
tables. 
 
> see next page 

 

 

 

3. Experimental Results & Findings 

3.1. Finding 1: Emergent Functional Structure in Base Models 

The most striking result came from probing the base Llama-2-7b-hf model before any 
fine-tuning. The MLP probe was able to classify which of the four mathematical operations was 
being prompted with 100% accuracy. This indicates that the latent space of a pre-trained model is 
not an undifferentiated sea of features. Instead, it possesses a sophisticated emergent geometry 
where fundamental concepts are already organized into distinct, separable regions. 

3.2. Finding 2: SFT Can Entangle Representations 

My experiments directly challenge the simple intuition that fine-tuning clarifies internal 
representations. After SFT, the MLP probe's accuracy on Llama-2-7b-hf for the Addition 
operation collapsed from 100% to 28%. I hypothesize this is due to objective mismatch: the 
probe seeks a simple decision boundary, while SFT seeks only to minimize output prediction 
error. SFT may find it optimal to warp the activation space, collapsing the representations for 
"add," "sum," etc., into a more complex, non-linear manifold that is highly efficient for 
generating the correct answer but is no longer cleanly separable by a simple probe. 

3.3. Finding 3: The Necessity of Non-Linear Probes 

The failure of the Linear probe across all post-SFT models was stark and consistent. This 
provides strong evidence that functional categories are not organized in simple, linearly 
separable regions. The superior performance of the MLP and Transformer probes demonstrates 
their ability to learn the complex, curved decision boundaries required. The perfect 100% 
accuracy of the MLP probe on the Gemma-7b model is particularly noteworthy, suggesting that 
its SFT process resulted in a functional geometry that is complex but perfectly separable by an 
MLP. 

 



 

3.4. Finding 4: Layer-by-Layer Refinement of Intent 

The Logit Lens visualizations provide a compelling narrative of how the model processes a 
prompt. For "Multiply 5 and 15," for example, we see the model's predictions at the "Mult" token 
position evolve from generic tokens to "ip" or "lying," gradually forming the word 
"Multiplying." 

 
This iterative refinement is not always monotonic. In the "Add 5 and 15" example, by Layer 22, 
the model offers "subtract" as a competing prediction, suggesting a more refined consideration of 
the mathematical domain before settling on the correct operation. This complex evolution 
highlights that understanding is a process, not an event. 
 
Moreover, this pattern of refinement is not unique to multiplication. To demonstrate its 
generality, the Logit Lens for 'Subtract 5 from 15' is also included. It shows a similar evolution, 
with the model's predictions at the 'Sub' token position solidifying on 'tract' in later layers, and 
the prediction for the token following '5' eventually focusing on 'from'. This confirms that 

 



 

iterative refinement is a core mechanism the model uses to process functional intent across 
different operations.

 

3.5. Finding 5: Testing Generalization with Leave-One-Out Ablation 

A key question is whether the probes are merely detecting memorized trigger words or if they are 
identifying a more general, abstract representation of the mathematical function. To test this, I 
conducted a leave-one-out ablation study. For each operation, I retrained the entire system (SFT 
+ Transformer probe) with one of the synonymous trigger words held out from the training set 
(e.g., training on 'add', 'sum', 'combine' but holding out 'plus'). The probe was then tested on the 
unseen held-out trigger. 
 
The results reveal a fascinating difference in the robustness of the learned functional manifolds: 

 



 

 
The near-perfect accuracy on Addition, Multiplication, and Division demonstrates that for these 
operations, the model learns a robust and generalizable concept that successfully clusters the 
held-out trigger word. However, the dramatic drop to 36% accuracy for Subtraction suggests its 
functional manifold is more fragile or semantically diffuse. This may be due to the greater 
semantic variance among its triggers ('subtract'/'minus' vs. the more abstract 'difference'), making 
the learned representation highly sensitive to the specific exemplars seen during training. This 
nuanced result highlights that the robustness of learned concepts is not uniform across all 
functions. 

4. Limitations and Future Work 
This investigation has several limitations, primarily stemming from compute constraints: 

●​ Model Scale: Experiments were limited to models ≤ 7B parameters. These phenomena 
need to be tested on frontier models. 

●​ Task Domain: Mathematical operations are a clean, but simple, domain. The complexity 
of these functional manifolds may be far greater for more abstract tasks. 

●​ Observational Nature: Probing is a correlational technique. The next logical step is to 
move to causal interventions. 

 
Future work should proceed along these vectors: 

1.​ Causal Interventions: Use the trained probe directions to actively steer the model's 
activations. Can we add a "subtraction vector" to a prompt for addition and change the 
model's output? 

2.​ Scaling Laws of Separability: Systematically study how functional separability (pre- and 
post-SFT) scales with model size, data size, and the amount of fine-tuning. Is there a 
phase transition where concepts become cleanly separable? 

3.​ Probing for Safety: Apply this multi-trigger, equivalence class framework to 
safety-critical domains. Instead of math operations, the classes could be "Helpful 
Response," "Evasive Refusal," and "Deceptive Misinformation." A probe could then act 
as a real-time monitor for the model's internal alignment state, providing a much more 
robust safety check than simple output filtering. 

 



 

5. Conclusion 
This project successfully designed and executed a deep investigation into the functional 
geometry of language models. By building a comprehensive, technically sophisticated research 
framework, I uncovered several non-obvious properties of LLMs: the emergent conceptual 
structure in base models, the paradoxical role of SFT in entangling representations, and the 
inherently non-linear nature of functional boundaries. The tools and findings presented here 
provide a robust foundation for future work in mechanistic interpretability, with the ultimate goal 
of building AI systems that are not just powerful, but also transparent, robust, and fundamentally 
understandable. 
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