
978-1-6654-7345-3/22/$31.00 ©2022 IEEE

Symbolic Math Reasoning with Language Models

Vedant Gaur
Aragon High School, Foster City, USA

vedantgaur101@gmail.com

Nikunj Saunshi

Princeton University, Princeton, USA
nsaunshi@cs.princeton.edu

Abstract—The emergence of large language models (LLMs) such

as OpenAI’s GPT-3, Google’s LaMDA, Meta’s OPT [2, 3, 7, 10]

etc. have revolutionized the field of natural language processing

(NLP). These models with upwards of hundreds of billions of

parameters are trained on large unlabeled text corpora and can

subsequently solve downstream tasks with little to no labeled data.

While these models are increasingly versatile in their abilities, e.g.,

solving math word problems, the larger question of their ability to

reason remains. Using and modifying the SVAMP dataset, we find

that GPT-3’s davinci-002 model, in addition to having good

performance on numerical math word problems, also performs

well on the potentially harder symbolic version of the same

problems. Furthermore, adopting a two-step approach (solve

symbolically and then substitute numerical values) leads to better

accuracy on the numerical test set in the zero-shot regime.

Additionally, we find that the use of specific prompting techniques

pushes the model, in many cases, to actively describe its thought

process and aid in the final answer output when faced with a

complex, multi-step problem, aligning with recent observations.

Keywords—Natural Language Processing, Zero-shot, Large

Language Models

I. INTRODUCTION

Autoregressive Language Models (LMs) aim to model the
distribution of natural language by being trained on large text
corpora. A popular idea to do so is through training an LM on
the task of next word prediction, i.e. given a context (sentence
or a partial sentence), an LM outputs a distribution over the set
of words that could potentially follow that given context. This
next word prediction ability of an LM can be leveraged to
generate or sample longer sequences of text by sampling one
word at a time. Large LMs trained with this simple strategy of
next word prediction turn out to be very useful for a wide range
of conventional Natural Language Processing (NLP) tasks,
such as machine translation, question-answering, and sentiment
analysis, taking us closer to the goal of constructed general-

purpose learning agents.

Recently there has been an increased interest in exploring
applications of LMs in more versatile scenarios. Rather
surprisingly, LMs have been shown to have some proficiency
in solving mathematical tasks, specifically math word problems
[4, 6, 8]. Such tasks are non-trivial to solve, since they
implicitly require understanding a text problem statement,
parsing it appropriately, and then performing simple arithmetic
calculations to arrive at a final answer; see Figure 1(a) for an
example. Nevertheless, such a word problem can be solved by
an LM, off-the-shelf, by simply asking it to generate the

answer to a given problem. This surprising

Code available at https://github.com/vedantgaur/LM-Math-Paper-22

success of LMs has prompted further research, leading to the
observation that the performance on such tasks can be
significantly boosted in many cases through the use of
appropriate prompts while querying the LM [4, 8]. This
suggests that LMs possibly have the capability to do even better
on mathematical tasks if used in the right way.

Inspired by the above observations, this work further
explores the reasoning abilities of LMs, when used off-the-
shelf. In particular, rather than evaluating LMs on numeric
math word problems, we propose evaluating them on the
potentially more challenging task of symbolic math word
problems; Figure 1(c) provides an example of a symbolic word
problem. Instead of dealing with numbers directly, the LM is
asked to solve a math problem by returning a symbolic math
expression that depends on the variables present in the problem.
The numeric task can then be solved by asking the LM to
substitute the variables with their appropriate numeric values
from the original numerical problem. Using and evaluating an

LM in this way confers multiple benefits:

● Provides a more “human-like” approach to solving the
problem through an intermediate symbolic step

● Interpretability: Encourages the LM to output a more
interpretable solution to the problem. This makes it
easier to debug the model in case of mistakes. It also
alleviates the fear that the LM solved the problem by
“memorizing” rather than understanding math.

● Robust evaluation: Rather than evaluating the LM on
all possible numbers, this provides a way to evaluate
the LM on a more generic version of the problem that

is independent of specific numeric values.

 We find that the manual eval of symbolic accuracy (66%) of
LMs is quite high, not much lower than the numeric accuracy
(72%), despite potentially being a more challenging task.
Secondly, we find that a two-step evaluation can lead to
accuracy at the same level as solving the numeric task directly,
with an added advantage of being able to debug the incorrect
answers better.

The basis of this paper lies under the assumption that Large
LMs act in one of two states: a compilation of their training
data, enabled by their huge training set and number of
examples; simply acting as a lookup table when presented with
an unseen question. This means that the output of the model is
heavily dependent on what it has seen in the training data, and
how well the task aligns with prior examples the model has
seen. On the other hand, the model may exhibit more
“intelligent” behavior, i.e., exhibiting an ability to understand
and reason. The problem with traditional approaches to this

20
22

 IE
EE

 M
IT

 U
nd

er
gr

ad
ua

te
 R

es
ea

rc
h

Te
ch

no
lo

gy
 C

on
fe

re
nc

e
(U

R
TC

) |
 9

78
-1

-6
65

4-
73

45
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

U
R

TC
56

83
2.

20
22

.1
00

02
21

8

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore. Restrictions apply.

problem is that by using numerical datasets, the assumption of
the model simply pulling from the training data is overlooked.

Fig. 1. Examples of GPT-3’s davinci-002 being run on both numerical and
symbolic prompts. The “Let’s think step by step.” prompt can yield much
more detailed and insightful outputs from the model and in certain cases
push the model towards the right answer.

II. BACKGROUND

A. LMs for downstream tasks

LMs have been used for traditional NLP tasks such as
machine translation, sentiment analysis, and question
answering. Recently, however, LMs have been able to solve
math or logic problems to a reasonable extent. This “higher
level” or capability of thought through generation speaks more
to an LM’s reasoning capabilities than conventional
downstream tasks. While machine translation and question
answering can be encoded into a model through a training
corpus, mathematical thinking relies more heavily on having a
broad understanding of patterns and formulas, and the
awareness to know when to use what.

While LMs’ ability to accurately solve a large variety of
tasks is a weak measure of intelligence and understanding, it is
unclear whether these models have the ability to contextualize
information in an input and utilize such to answer the prompt.
The hundreds of billions of parameters bolster the model’s
performance in natural language tasks but conversely create the
black box paradigm that makes it difficult to uncover the reason
behind its successes. These models can just as easily utilize the
massive amounts of data that they are trained with to simply
find patterns and essentially pull from training examples in
order to solve a problem. This could yield a false sense of
“intelligence” that results in outputs that are slightly off of the
correct answer, or reasoning steps that have no relation to the
problem being solved.

B. Prompting

Prompting is useful in eliciting useful and accurate
information from an LM, by “priming” it with an appropriate
piece of text that describes what kind of outputs one expects
from the model. The wording of a prompt can modify the
answer that the given LM provides. We used this capability of
prompts to shift LM output towards higher accuracy on math
word problems and to gain a better understanding of the thought
process of the model. CoT prompting has been a step toward
optimizing arithmetic/logic outputs from LMs by acting as an
intermediary step before the model’s response (Ling et al.,
2017; Amini et al., 2019; Chen et al., 2021; Cobbe et al., 2021).
While proven effective at eliciting more accurate and logical
responses regarding math and reason word problems, it still
severely lacks in capabilities exhibited by even elementary
school children.

C. Evaluation

LMs can be evaluated either in the zero-shot or one-shot
prompting. Zero-shot prompting provides the model with
simply a problem and the beginning of an answer like “Let’s
think step by step”. The LM is then expected to generate an
answer. Such examples can be found in Fig. 1. One-shot
prompting is similar, although it provides the model with one
problem and a solution to it first, and then another problem with
the same format as the zero-shot prompt. One-shot prompting
is similar to the idea of few-shot in-context learning where a
model is given a series of examples and is then told to solve the
problem or predict the next word. Zero-shot learning is the
fundamental opposite, where the prompt contains a situation

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore. Restrictions apply.

that the model has never seen before. While the one-shot
prompt only includes one example, it is given a problem from
the same dataset in order to expose the model to methods of
solving. Every one-shot run was done using the same exact
prompt or context, chosen because the solution to the problem
had multiple steps and operations.

Each evaluation method contains prompts that (1) simply
provide the prompt, (2) employ CoT reasoning by adding “Let’s
think step by step”, and (3) prompt the model to generate
intermediary variables to solve the problem (the intermediate
variable prompt uses the string: “Let's think step by step.
Introduce intermediate variables and solve the task
symbolically.”).

D. Symbolic math problems

This paper is more concerned with the ability of vanilla, i.e.,
non-finetuned, LMs to correctly solve math word problems in
a symbolic form, where numbers are replaced by variables.
Prior work has taken the finetuned approach with high accuracy
[5]. Minerva is able to correctly solve much higher-level math
problems than simply elementary word problems, though not
completely symbolic. The symbolic prompts that we used can
be seen in Fig. 1 (c) and (d) and in Fig. 2. While having a
specialized LM may result in high accuracy at the specified
task, benchmarks on traditional LMs can be more insightful as
to whether these models can solve generic, unseen problems.

III. DATA MANIPULATION AND USES

Fig. 2. The process of symbolizing a prompt as well as an equation. Each

number is replaced by an intermediary variable which can then be
modified again to reach the final symbolized prompt.

A. Symbolizing Dataset

 To test LMs on symbolic tasks, it is necessary to have a
generic dataset that could be easily modified to test the extent
to which LMs can perform arithmetic. By introducing a
symbolic prompting system, it is much more clear whether or
not a model is able to answer a problem, and in conjunction
mirrors the contextual understanding and prompt-based steps
exhibited by humans. Moreover, it is much easier to generalize
and modify an input to test various numerical and symbolic

values. We describe the process to convert a numeric problem
to a symbolic one below; see Figure 2 for a visualization.

Each number in both the question and provided answer and
equation is extracted via a Python script and saved into a new
column in the dataset. The numbers are replaced with specific
tags <1>, <2>, …, <n>, which can then be replaced with any
series of variables in the testing phase.

For our testing, we chose to use {w, x, y, z} as variables.
The problems only ever have 4 numbers at most meaning that
any combination of the variables can be used. In our testing, the
model could distinguish between each of the variables and
output a sensible expression or equation. Further testing can
explore which variables, if any, tend to yield better context
extraction from the model.

B. Evaluation Method
 This paper primarily focuses on evaluating GPT-3 on
symbolic tasks, though we have provided metrics for runs on
numerical questions as a means to compare results. Both
symbolic and numerical accuracies were calculated manually
due to the high variance in model outputs. Answer extraction
helped isolate the final output in most cases but also included
unnecessary information occasionally. This meant that
automatic extraction would not have been reliable in the current
state and could either miss the actual output of the model or be
confused by other values present.

Thus, all evaluation was done manually by referencing the
correct symbolic expression and numerical answer, and in the
cases of CoT outputs, to peer into the reasoning to get a further
idea of the model’s performance.

A third evaluation method, two-step prompting, was also
introduced as an applicable method of symbolic prompt q&a.
By converting the prompt to a symbolic one, running the model
on the symbolized prompt, and then plugging back the original
variables, two-step prompting more closely mimics techniques
such as substitution and allows for the full utility of symbolic
prompt accuracy.

As it is infeasible to do manual accuracy evaluation on all
1000 prompts present in the SVAMP dataset, we chose 50
random prompts (to reduce experimental uncertainty) and ran
the model on these tasks. Further prompt finetuning for answer
extraction can be pursued in order to successfully implement
automated evaluation.

IV. EXPERIMENTAL RESULTS

We performed a variety of tests to determine whether a
specific method of prompting would yield higher accuracy on
the SVAMP dataset. Surprisingly we did see that symbolic
accuracy was able to meet that of previous papers on numerical
datasets. Moreover, in cases like one-shot, the model performed
with much greater accuracy on symbolic at 80%; see table 2.
The higher numbers for numeric problems compared to prior
work is likely because of a manual evaluation instead of
automated evaluation that could lead to false negatives.

These results conflict with the expectation of LMs having
lookup table-like behavior, as they seem equally adept, if not
better when faced with an ambiguous prompt. Because sets of
symbolic word problems do not exist extensively online—
rather datasets tend to focus on numerical tasks—the section of
the training corpus that is symbolic prompts is likely minimal.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore. Restrictions apply.

Of each of the sections, we report in tables I and II the
number of problems that were seen as ambiguous, generally
right in reasoning but wrong in its final output, or vice-versa
(without steps, with steps, intermediate variables):

TABLE I. ZERO-SHOT RESULTS

a. Zero-shot results with normal, CoT, and intermediate variable prompting. The bottom row represents
the number of model outputs that are considered either close to true, or at fault in a manner other than an
outright incorrect answer. The first percentage represents the number (percentage of total) of these outputs
that we consider to be correct, and the second, the ones we consider to be incorrect. The titles with “n”
denote numeric evaluations, and the ones with “s” denote symbolic evaluations

TABLE II. ONE-SHOT RESULTS

b. Zero-shot results with normal, CoT, and intermediate variable prompting. The bottom row represents
the number of model outputs that are considered either close to true, or at fault in a manner other than an
outright incorrect answer. The first percentage represents the number (percentage of total) of these outputs
that we consider to be correct, and the second, the ones we consider to be incorrect.

V. ANALYSIS

Largely, it is seen that symbolic prompts are solvable by
LMs in specific scenarios. While zero-shot CoT does
comparatively worse than its numeric counterpart, it is still able
to yield similar benchmarks to previous CoT results on numeric
datasets. Moreover, it is seen that CoT prompting is helpful in
two-step evaluation, yielding much higher results than previous
numeric CoT papers, if we give the model a benefit of doubt
when it comes to ambiguous answers.

 Zero-shot prompting: This seems to be the worst
performing section on symbolic prompts, with high CoT
accuracy, but little else. Surprisingly, numerical prompts
performed extremely well and were fairly consistent between
the prompts with and without CoT.

 One-shot Prompting: One-shot results were much more
insightful than the other sections, as the model performed
consistently better on symbolic tasks than numerical ones. Most
surprising is the accuracy of the model when prompted to define
intermediate variables. The model did much better on this
subsection than on any other. A possible explanation for this
behavior and the fairly mediocre results for intermediate
variable prompts throughout, is a grasp on how exactly to
define these intermediary steps. In scenarios like zero-shot and
two-step prompting, the model may lack an understanding in
establishing intermediary steps. Through in-context learning,
however, it seems like having an example input-output
sequence proves to be extremely beneficial to the model.

 Two-step Extraction: Given high two-step accuracy with
CoT prompting, which exceeds previous benchmarks, we have
provided a new, zero-shot method to compute numerical math
word problems. With the large increase in accuracy from the
prompt finetuning for symbolic tasks, two-step is quite versatile
in providing a generic, accurate solution, that can be utilized for
any array of values inputted.
 Two-step prompting closely mirrors the method of
inductive bias in which the model finds a general solution and
then looks at the specifics of the input. This method of solution
may be seen as more “human-like”, mirroring the patterns
humans pick up on and then employ to solve unseen problems.

A. Different prompt

 The intermediate variables prompt prompted the model to
introduce intermediate expressions and variables, to provide for
a more rigorous solution to problems. This prompt seemed to
largely confuse the model and wouldn’t be much too useful in
situations with minimal context. However, as proven by
symbolic one-shot results in that column, the method of
prompting can also yield high accuracy with little finetuning.

B. Analysis of mistakes

 There can certainly exist some errors in accuracy calculations
and determining the efficacy of the model in each situation.
Since all benchmarks were evaluated manually, although
unbiased evaluation was attempted, small biases could slightly
alter accuracy values. Having an automated evaluation process
could solve this, but again would be difficult to implement due
to the nature of the model outputs.
 Regarding model performance, we did see some errors in
the model’s reasoning and outputs: when faced with a question
that is a little ambiguous or one that provides some ambiguity,
the model seems to get confused and tends to infer, seemingly
through context it has accumulated via its training corpus
(q#645, or index 35 in one-shot symbolic results).
 The mathematical operation that the model uses is correct a
lot of the time, but the answer isn’t (i.e., if the operation is
subtraction [let's say - y], the model is able to pick this up, but

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore. Restrictions apply.

tends to have the values wrong; w + y - y instead of w - y ⇒
final answer becomes w instead of w-y).
 Q#355, or index 33 in the SVAMP dataset has either an
incorrect solution or incorrect question context (it should either
say 80 instead of 8 or have the answer be w/x instead of x*w).
 While each index was random, the script ended up producing
the same prompt index twice. This means that there are two runs
that have the exact same input.
 The model seems to be able to grasp theory but sometimes
forgets to perform and/or list down the operations reliably (it
forgets the multiplication sign in two-step index 3, and thus gets
the wrong answer).
 There seems to be a very consistent multiplication error
across most of the runs. In the instance of the question where
the model does so, the numbers are quite large. The model sets
up everything right but ultimately fails the operation. This is
similar to conclusions drawn about large numbers in the
Minerva paper.

VI. CONCLUSIONS AND FUTURE WORK

One-shot reasoning proved to be the most consistently-well
performing section out of the three, yielding 80% accuracy in
the case of symbolic, intermediate variables prompts. This is to
be expected given past papers on in-context learning. Overall,
it seems like LMs can also solve symbolic versions of math
problems reasonably well. However, there is still a lot of scope
for improvement.

These experiments can be broadened to encompass (1) other
LMs and (2) other datasets. Moreover, if answer extraction
proves successful, more accurate benchmarks can be extracted.
To further the discussion of context, testing what the cut-off for
accuracy improvement is depending on the number of problems
given in context could provide insightful results.

REFERENCES

[1] Betz, Gregor, et al. “Critical Thinking for Language Models.” ArXiv.org,
17 Dec. 2020, https://arxiv.org/abs/2009.07185.

[2] Brown, Tom B., et al. “Language Models Are Few-Shot Learners.”
ArXiv.org, 22 July 2020, https://arxiv.org/abs/2005.14165.

[3] Devlin, Jacob, et al. “Bert: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.” ArXiv.org, 24 May 2019,
https://arxiv.org/abs/1810.04805.

[4] Kojima, Takeshi, et al. “Large Language Models Are Zero-Shot
Reasoners.” ArXiv.org, 9 June 2022, https://arxiv.org/abs/2205.11916.

[5] Lewkowycz, Aitor, et al. “Solving Quantitative Reasoning Problems with
Language Models.” ArXiv.org, 1 July 2022,
https://arxiv.org/abs/2206.14858.

[6] Patel, Arkil, et al. “Are NLP Models Really Able to Solve Simple Math
Word Problems?” ArXiv.org, 15 Apr. 2021,
https://arxiv.org/abs/2103.07191.

[7] Thoppilan, Romal, et al. “LAMDA: Language Models for Dialog
Applications.” ArXiv.org, 10 Feb. 2022,
https://arxiv.org/abs/2201.08239.

[8] Wei, Jason, et al. “Chain of Thought Prompting Elicits Reasoning in
Large Language Models.” ArXiv.org, 13 June 2022,
https://arxiv.org/abs/2201.11903.

[9] Yasunaga, Michihiro, et al. “Qa-GNN: Reasoning with Language Models
and Knowledge Graphs for Question Answering.” ArXiv.org, 5 Nov.
2021, https://arxiv.org/abs/2104.06378.

[10] Zhang, Susan, et al. “OPT: Open Pre-Trained Transformer Language
Models.” ArXiv.org, 21 June 2022, https://arxiv.org/abs/2205.01068.

APPENDIX

Why did we use SVAMP specifically?
The SVAMP dataset was primarily chosen because other

datasets contain somewhat more complex problems that in
testing yielded relatively low accuracy.

SVAMP had a few further advantages that were quite useful
for our specific use case. The annotation file provided by the
authors with the data had expressions that were solutions to
each of the problems on top of the provided numerical answers.
This allows for easy conversion and evaluation of symbolic
outputs.

(Sample row section from SVAMP dataset):

Body Question Equation Answer

Each pack of
dvds costs
76 dollars. If
there is a
discount of
25 dollars on
each pack

How much do
you have to
pay to buy
each pack?

(76.0 - 25.0)

51

 In preliminary testing, we find the complexity of other
datasets to be true. Given the following question and model
output from the AQuA-RAT dataset:

Two friends plan to walk along a 43-km trail, starting at opposite
ends of the trail at the same time. If Friend P's rate is 15% faster
than Friend Q's, how many kilometers will Friend P have walked
when they pass each other?

We can set up a proportion to solve this problem. Let's call the
distance that Friend P has walked x, and the distance that Friend Q
has walked y. Then,

15/100 * x = y

We can solve for y:

y = 15/100 * x

Now, we know that the total distance of the trail is 43 km. This
means that:

x + y = 43

We can substitute y in for 15/100 * x and solve for x:

x + 15/100 * x = 43

x + 15/100x = 43

x(1 + 15/100) = 43

x = 43 / (1 + 15/100)

x = approximately 41.86 km

This means that when Friend P has walked 41.86 km, they will
pass Friend Q.

We see a few key errors:
1. The model incorrectly represents the relationship between Friend P
and Q, having it so that Friend’s P rate of travel is 15% of Friend Q’s
rather than 115%, or 15% more.

2. Instead of modeling the relationship between Friend P and Q’s rate
of travel, it erroneously has the values as total distance.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore. Restrictions apply.

