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Abstract—The emergence of large language models (LLMs) such 

as OpenAI’s GPT-3, Google’s LaMDA, Meta’s OPT [2, 3, 7, 10] 

etc. have revolutionized the field of natural language processing 

(NLP). These models with upwards of hundreds of billions of 

parameters are trained on large unlabeled text corpora and can 

subsequently solve downstream tasks with little to no labeled data. 

While these models are increasingly versatile in their abilities, e.g., 

solving math word problems, the larger question of their ability to 

reason remains. Using and modifying the SVAMP dataset, we find 

that GPT-3’s davinci-002 model, in addition to having good 

performance on numerical math word problems, also performs 

well on the potentially harder symbolic version of the same 

problems. Furthermore, adopting a two-step approach (solve 

symbolically and then substitute numerical values) leads to better 

accuracy on the numerical test set in the zero-shot regime. 

Additionally, we find that the use of specific prompting techniques 

pushes the model, in many cases, to actively describe its thought 

process and aid in the final answer output when faced with a 

complex, multi-step problem, aligning with recent observations. 

Keywords—Natural Language Processing, Zero-shot, Large 

Language Models 

I. INTRODUCTION 

Autoregressive Language Models (LMs) aim to model the 
distribution of natural language by being trained on large text 
corpora. A popular idea to do so is through training an LM on 
the task of next word prediction, i.e. given a context (sentence 
or a partial sentence), an LM outputs a distribution over the set 
of words that could potentially follow that given context. This 
next word prediction ability of an LM can be leveraged to 
generate or sample longer sequences of text by sampling one 
word at a time. Large LMs trained with this simple strategy of 
next word prediction turn out to be very useful for a wide range 
of conventional Natural Language Processing (NLP) tasks, 
such as machine translation, question-answering, and sentiment 
analysis, taking us closer to the goal of constructed general-

purpose learning agents. 

Recently there has been an increased interest in exploring 
applications of LMs in more versatile scenarios. Rather 
surprisingly, LMs have been shown to have some proficiency 
in solving mathematical tasks, specifically math word problems 
[4, 6, 8]. Such tasks are non-trivial to solve, since they 
implicitly require understanding a text problem statement, 
parsing it appropriately, and then performing simple arithmetic 
calculations to arrive at a final answer; see Figure 1(a) for an 
example. Nevertheless, such a word problem can be solved by 
an LM, off-the-shelf,  by simply asking it to generate the 

answer to a given problem. This surprising 

Code available at https://github.com/vedantgaur/LM-Math-Paper-22 

success of LMs has prompted further research, leading to the 
observation that the performance on such tasks can be 
significantly boosted in many cases through the use of 
appropriate prompts while querying the LM [4, 8]. This 
suggests that LMs possibly have the capability to do even better 
on mathematical tasks if used in the right way. 

Inspired by the above observations, this work further 
explores the reasoning abilities of LMs, when used off-the-
shelf. In particular, rather than evaluating LMs on numeric 
math word problems, we propose evaluating them on the 
potentially more challenging task of symbolic math word 
problems; Figure 1(c) provides an example of a symbolic word 
problem. Instead of dealing with numbers directly, the LM is 
asked to solve a math problem by returning a symbolic math 
expression that depends on the variables present in the problem. 
The numeric task can then be solved by asking the LM to 
substitute the variables with their appropriate numeric values 
from the original numerical problem. Using and evaluating an 

LM in this way confers multiple benefits: 

● Provides a more “human-like” approach to solving the 
problem through an intermediate symbolic step 

● Interpretability: Encourages the LM to output a more 
interpretable solution to the problem. This makes it 
easier to debug the model in case of mistakes. It also 
alleviates the fear that the LM solved the problem by 
“memorizing” rather than understanding math. 

● Robust evaluation: Rather than evaluating the LM on 
all possible numbers, this provides a way to evaluate 
the LM on a more generic version of the problem that 

is independent of specific numeric values. 

    We find that the manual eval of symbolic accuracy (66%) of 
LMs is quite high, not much lower than the numeric accuracy 
(72%), despite potentially being a more challenging task. 
Secondly, we find that a two-step evaluation can lead to 
accuracy at the same level as solving the numeric task directly, 
with an added advantage of being able to debug the incorrect 
answers better. 

The basis of this paper lies under the assumption that Large 
LMs act in one of two states: a compilation of their training 
data, enabled by their huge training set and number of 
examples; simply acting as a lookup table when presented with 
an unseen question. This means that the output of the model is 
heavily dependent on what it has seen in the training data, and 
how well the task aligns with prior examples the model has 
seen. On the other hand, the model may exhibit more 
“intelligent” behavior, i.e., exhibiting an ability to understand 
and reason. The problem with traditional approaches to this 

20
22

 IE
EE

 M
IT

 U
nd

er
gr

ad
ua

te
 R

es
ea

rc
h 

Te
ch

no
lo

gy
 C

on
fe

re
nc

e 
(U

R
TC

) |
 9

78
-1

-6
65

4-
73

45
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

U
R

TC
56

83
2.

20
22

.1
00

02
21

8

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 26,2024 at 18:06:49 UTC from IEEE Xplore.  Restrictions apply. 



problem is that by using numerical datasets, the assumption of 
the model simply pulling from the training data is overlooked. 
 

 

  

 

Fig. 1. Examples of GPT-3’s davinci-002 being run on both numerical and 
symbolic prompts. The “Let’s think step by step.” prompt can yield much 
more detailed and insightful outputs from the model and in certain cases 
push the model towards the right answer. 

II. BACKGROUND 

A. LMs for downstream tasks 

LMs have been used for traditional NLP tasks such as 
machine translation, sentiment analysis, and question 
answering. Recently, however, LMs have been able to solve 
math or logic problems to a reasonable extent. This “higher 
level” or capability of thought through generation speaks more 
to an LM’s reasoning capabilities than conventional 
downstream tasks. While machine translation and question 
answering can be encoded into a model through a training 
corpus, mathematical thinking relies more heavily on having a 
broad understanding of patterns and formulas, and the 
awareness to know when to use what. 

While LMs’ ability to accurately solve a large variety of 
tasks is a weak measure of intelligence and understanding, it is 
unclear whether these models have the ability to contextualize 
information in an input and utilize such to answer the prompt. 
The hundreds of billions of parameters bolster the model’s 
performance in natural language tasks but conversely create the 
black box paradigm that makes it difficult to uncover the reason 
behind its successes. These models can just as easily utilize the 
massive amounts of data that they are trained with to simply 
find patterns and essentially pull from training examples in 
order to solve a problem. This could yield a false sense of 
“intelligence” that results in outputs that are slightly off of the 
correct answer, or reasoning steps that have no relation to the 
problem being solved. 

B. Prompting 

Prompting is useful in eliciting useful and accurate 
information from an LM, by “priming” it with an appropriate 
piece of text that describes what kind of outputs one expects 
from the model. The wording of a prompt can modify the 
answer that the given LM provides. We used this capability of 
prompts to shift LM output towards higher accuracy on math 
word problems and to gain a better understanding of the thought 
process of the model. CoT prompting has been a step toward 
optimizing arithmetic/logic outputs from LMs by acting as an 
intermediary step before the model’s response (Ling et al., 
2017; Amini et al., 2019; Chen et al., 2021; Cobbe et al., 2021). 
While proven effective at eliciting more accurate and logical 
responses regarding math and reason word problems, it still 
severely lacks in capabilities exhibited by even elementary 
school children. 

C. Evaluation 

LMs can be evaluated either in the zero-shot or one-shot 
prompting. Zero-shot prompting provides the model with 
simply a problem and the beginning of an answer like “Let’s 
think step by step”. The LM is then expected to generate an 
answer. Such examples can be found in Fig. 1. One-shot 
prompting is similar, although it provides the model with one 
problem and a solution to it first, and then another problem with 
the same format as the zero-shot prompt. One-shot prompting 
is similar to the idea of few-shot in-context learning where a 
model is given a series of examples and is then told to solve the 
problem or predict the next word. Zero-shot learning is the 
fundamental opposite, where the prompt contains a situation 
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that the model has never seen before. While the one-shot 
prompt only includes one example, it is given a problem from 
the same dataset in order to expose the model to methods of 
solving. Every one-shot run was done using the same exact 
prompt or context, chosen because the solution to the problem 
had multiple steps and operations. 

Each evaluation method contains prompts that (1) simply 
provide the prompt, (2) employ CoT reasoning by adding “Let’s 
think step by step”, and (3) prompt the model to generate 
intermediary variables to solve the problem (the intermediate 
variable prompt uses the string: “Let's think step by step. 
Introduce intermediate variables and solve the task 
symbolically.”). 

D. Symbolic math problems 

This paper is more concerned with the ability of vanilla, i.e., 
non-finetuned, LMs to correctly solve math word problems in 
a symbolic form, where numbers are replaced by variables. 
Prior work has taken the finetuned approach with high accuracy 
[5]. Minerva is able to correctly solve much higher-level math 
problems than simply elementary word problems, though not 
completely symbolic. The symbolic prompts that we used can 
be seen in Fig. 1 (c) and (d) and in Fig. 2. While having a 
specialized LM may result in high accuracy at the specified 
task, benchmarks on traditional LMs can be more insightful as 
to whether these models can solve generic, unseen problems. 

III. DATA MANIPULATION AND USES 

 

 
Fig. 2. The process of symbolizing a prompt as well as an equation. Each 

number is replaced by an intermediary variable which can then be 
modified again to reach the final symbolized prompt. 

A. Symbolizing Dataset 

 To test LMs on symbolic tasks, it is necessary to have a 
generic dataset that could be easily modified to test the extent 
to which LMs can perform arithmetic. By introducing a 
symbolic prompting system, it is much more clear whether or 
not a model is able to answer a problem, and in conjunction 
mirrors the contextual understanding and prompt-based steps 
exhibited by humans. Moreover, it is much easier to generalize 
and modify an input to test various numerical and symbolic 

values. We describe the process to convert a numeric problem 
to a symbolic one below; see Figure 2 for a visualization. 

Each number in both the question and provided answer and 
equation is extracted via a Python script and saved into a new 
column in the dataset. The numbers are replaced with specific 
tags <1>, <2>, …, <n>, which can then be replaced with any 
series of variables in the testing phase. 

For our testing, we chose to use {w, x, y, z} as variables. 
The problems only ever have 4 numbers at most meaning that 
any combination of the variables can be used. In our testing, the 
model could distinguish between each of the variables and 
output a sensible expression or equation. Further testing can 
explore which variables, if any, tend to yield better context 
extraction from the model. 

 
B. Evaluation Method 
 This paper primarily focuses on evaluating GPT-3 on 
symbolic tasks, though we have provided metrics for runs on 
numerical questions as a means to compare results. Both 
symbolic and numerical accuracies were calculated manually 
due to the high variance in model outputs. Answer extraction 
helped isolate the final output in most cases but also included 
unnecessary information occasionally. This meant that 
automatic extraction would not have been reliable in the current 
state and could either miss the actual output of the model or be 
confused by other values present. 

Thus, all evaluation was done manually by referencing the 
correct symbolic expression and numerical answer, and in the 
cases of CoT outputs, to peer into the reasoning to get a further 
idea of the model’s performance. 

A third evaluation method, two-step prompting, was also 
introduced as an applicable method of symbolic prompt q&a. 
By converting the prompt to a symbolic one, running the model 
on the symbolized prompt, and then plugging back the original 
variables, two-step prompting more closely mimics techniques 
such as substitution and allows for the full utility of symbolic 
prompt accuracy. 

As it is infeasible to do manual accuracy evaluation on all 
1000 prompts present in the SVAMP dataset, we chose 50 
random prompts (to reduce experimental uncertainty) and ran 
the model on these tasks. Further prompt finetuning for answer 
extraction can be pursued in order to successfully implement 
automated evaluation. 

IV. EXPERIMENTAL RESULTS 

We performed a variety of tests to determine whether a 
specific method of prompting would yield higher accuracy on 
the SVAMP dataset. Surprisingly we did see that symbolic 
accuracy was able to meet that of previous papers on numerical 
datasets. Moreover, in cases like one-shot, the model performed 
with much greater accuracy on symbolic at 80%; see table 2. 
The higher numbers for numeric problems compared to prior 
work is likely because of a manual evaluation instead of 
automated evaluation that could lead to false negatives. 

These results conflict with the expectation of LMs having 
lookup table-like behavior, as they seem equally adept, if not 
better when faced with an ambiguous prompt. Because sets of 
symbolic word problems do not exist extensively online—
rather datasets tend to focus on numerical tasks—the section of 
the training corpus that is symbolic prompts is likely minimal. 
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Of each of the sections, we report in tables I and II the 
number of problems that were seen as ambiguous, generally 
right in reasoning but wrong in its final output, or vice-versa 
(without steps, with steps, intermediate variables): 

TABLE I.  ZERO-SHOT RESULTS 

 
a. Zero-shot results with normal, CoT, and intermediate variable prompting. The bottom row represents 
the number of model outputs that are considered either close to true, or at fault in a manner other than an 
outright incorrect answer. The first percentage represents the number (percentage of total) of these outputs 
that we consider to be correct, and the second, the ones we consider to be incorrect. The titles with “n” 
denote numeric evaluations, and the ones with “s” denote symbolic evaluations 

TABLE II.  ONE-SHOT RESULTS 

b. Zero-shot results with normal, CoT, and intermediate variable prompting. The bottom row represents 
the number of model outputs that are considered either close to true, or at fault in a manner other than an 
outright incorrect answer. The first percentage represents the number (percentage of total) of these outputs 
that we consider to be correct, and the second, the ones we consider to be incorrect. 

V. ANALYSIS 

Largely, it is seen that symbolic prompts are solvable by 
LMs in specific scenarios. While zero-shot CoT does 
comparatively worse than its numeric counterpart, it is still able 
to yield similar benchmarks to previous CoT results on numeric 
datasets. Moreover, it is seen that CoT prompting is helpful in 
two-step evaluation, yielding much higher results than previous 
numeric CoT papers, if we give the model a benefit of doubt 
when it comes to ambiguous answers. 

 Zero-shot prompting: This seems to be the worst 
performing section on symbolic prompts, with high CoT 
accuracy, but little else. Surprisingly, numerical prompts 
performed extremely well and were fairly consistent between 
the prompts with and without CoT.  

 One-shot Prompting: One-shot results were much more 
insightful than the other sections, as the model performed 
consistently better on symbolic tasks than numerical ones. Most 
surprising is the accuracy of the model when prompted to define 
intermediate variables. The model did much better on this 
subsection than on any other. A possible explanation for this 
behavior and the fairly mediocre results for intermediate 
variable prompts throughout, is a grasp on how exactly to 
define these intermediary steps. In scenarios like zero-shot and 
two-step prompting, the model may lack an understanding in 
establishing intermediary steps. Through in-context learning, 
however, it seems like having an example input-output 
sequence proves to be extremely beneficial to the model. 

 Two-step Extraction: Given high two-step accuracy with 
CoT prompting, which exceeds previous benchmarks, we have 
provided a new, zero-shot method to compute numerical math 
word problems. With the large increase in accuracy from the 
prompt finetuning for symbolic tasks, two-step is quite versatile 
in providing a generic, accurate solution, that can be utilized for 
any array of values inputted.  
 Two-step prompting closely mirrors the method of 
inductive bias in which the model finds a general solution and 
then looks at the specifics of the input. This method of solution 
may be seen as more “human-like”, mirroring the patterns 
humans pick up on and then employ to solve unseen problems. 

A. Different prompt 

    The intermediate variables prompt prompted the model to 
introduce intermediate expressions and variables, to provide for 
a more rigorous solution to problems. This prompt seemed to 
largely confuse the model and wouldn’t be much too useful in 
situations with minimal context. However, as proven by 
symbolic one-shot results in that column, the method of 
prompting can also yield high accuracy with little finetuning. 

B. Analysis of mistakes 

   There can certainly exist some errors in accuracy calculations 
and determining the efficacy of the model in each situation. 
Since all benchmarks were evaluated manually, although 
unbiased evaluation was attempted, small biases could slightly 
alter accuracy values. Having an automated evaluation process 
could solve this, but again would be difficult to implement due 
to the nature of the model outputs. 
      Regarding model performance, we did see some errors in 
the model’s reasoning and outputs: when faced with a question 
that is a little ambiguous or one that provides some ambiguity, 
the model seems to get confused and tends to infer, seemingly 
through context it has accumulated via its training corpus 
(q#645, or index 35 in one-shot symbolic results). 
      The mathematical operation that the model uses is correct a 
lot of the time, but the answer isn’t (i.e., if the operation is 
subtraction [let's say - y], the model is able to pick this up, but 
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tends to have the values wrong; w + y - y instead of w - y ⇒ 
final answer becomes w instead of w-y). 
     Q#355, or index 33 in the SVAMP dataset has either an 
incorrect solution or incorrect question context (it should either 
say 80 instead of 8 or have the answer be w/x instead of x*w). 
   While each index was random, the script ended up producing 
the same prompt index twice. This means that there are two runs 
that have the exact same input. 
       The model seems to be able to grasp theory but sometimes 
forgets to perform and/or list down the operations reliably (it 
forgets the multiplication sign in two-step index 3, and thus gets 
the wrong answer). 
     There seems to be a very consistent multiplication error 
across most of the runs. In the instance of the question where 
the model does so, the numbers are quite large. The model sets 
up everything right but ultimately fails the operation. This is 
similar to conclusions drawn about large numbers in the 
Minerva paper. 

VI. CONCLUSIONS AND FUTURE WORK 

One-shot reasoning proved to be the most consistently-well 
performing section out of the three, yielding 80% accuracy in 
the case of symbolic, intermediate variables prompts. This is to 
be expected given past papers on in-context learning. Overall, 
it seems like LMs can also solve symbolic versions of math 
problems reasonably well. However, there is still a lot of scope 
for improvement. 

These experiments can be broadened to encompass (1) other 
LMs and (2) other datasets. Moreover, if answer extraction 
proves successful, more accurate benchmarks can be extracted. 
To further the discussion of context, testing what the cut-off for 
accuracy improvement is depending on the number of problems 
given in context could provide insightful results. 
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APPENDIX 

Why did we use SVAMP specifically? 
The SVAMP dataset was primarily chosen because other 

datasets contain somewhat more complex problems that in 
testing yielded relatively low accuracy. 

SVAMP had a few further advantages that were quite useful 
for our specific use case. The annotation file provided by the 
authors with the data had expressions that were solutions to 
each of the problems on top of the provided numerical answers. 
This allows for easy conversion and evaluation of symbolic 
outputs. 

(Sample row section from SVAMP dataset): 

Body Question Equation Answer 

Each pack of 
dvds costs 
76 dollars. If 
there is a 
discount of 
25 dollars on 
each pack 

How much do 
you have to 
pay to buy 
each pack? 

 

( 76.0 - 25.0 ) 

 

51 

 In preliminary testing, we find the complexity of other 
datasets to be true. Given the following question and model 
output from the AQuA-RAT dataset: 

Two friends plan to walk along a 43-km trail, starting at opposite 
ends of the trail at the same time. If Friend P's rate is 15% faster 
than Friend Q's, how many kilometers will Friend P have walked 
when they pass each other? 

We can set up a proportion to solve this problem. Let's call the 
distance that Friend P has walked x, and the distance that Friend Q 
has walked y. Then, 

15/100 * x = y 

We can solve for y: 

y = 15/100 * x 

Now, we know that the total distance of the trail is 43 km. This 
means that: 

x + y = 43 

We can substitute y in for 15/100 * x and solve for x: 

x + 15/100 * x = 43 

x + 15/100x = 43 

x(1 + 15/100) = 43 

x = 43 / (1 + 15/100) 

x = approximately 41.86 km 

This means that when Friend P has walked 41.86 km, they will 
pass Friend Q. 

We see a few key errors: 
1.  The model incorrectly represents the relationship between Friend P 
and Q, having it so that Friend’s P rate of travel is 15% of Friend Q’s 
rather than 115%, or 15% more. 

2. Instead of modeling the relationship between Friend P and Q’s rate 
of travel, it erroneously has the values as total distance. 
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